#### Your Cart

Your cart is empty!

We strive to deliver the best value to our customers and ensure complete satisfaction for all our textbook rentals.

- You can return your online books for any reason within our refund period – no questions asked.
- Every order is available for express shipping, and return shipping is always free.
- You'll be happy with the quality of your books (or we'll ship you another one on our dime).
- You can extend your rental at any time – at the same cheap daily rental rate.
- If you decide to keep the book it will never cost more than the purchase price.

As always, you have access to over 5 million titles. Plus, you can choose from 5 rental periods, so you only pay for what you’ll use. And if you ever run into trouble, our top-notch U.S. based Customer Service team is ready to help by email, chat or phone.

* Free shipping excludes HI, AK and PR.

This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical...
Show More

This book arises out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students. The mathematical structure of QM is formulated in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables, for a general physical system. The Dirac von Neumann axioms are then derived. The description of states and observables as Hilbert space vectors and operators follows from the GNS and Gelfand-Naimark Theorems. The experimental existence of complementary observables for atomic systems is shown to imply the noncommutativity of the observable algebra, the distinctive feature of QM; for finite degrees of freedom, the Weyl algebra codifies the experimental complementarity of position and momentum (Heisenberg commutation relations) and Schrödinger QM follows from the von Neumann uniqueness theorem. The existence problem of the dynamics is related to the self-adjointness of the Hamiltonian and solved by the Kato-Rellich conditions on the potential, which also guarantee quantum stability for classically unbounded-below Hamiltonians. Examples are discussed which include the explanation of the discreteness of the atomic spectra. Because of the increasing interest in the relation between QM and stochastic processes, a final chapter is devoted to the functional integral approach (Feynman-Kac formula), to the formulation in terms of ground state correlations (the quantum mechanical analog of the Wightman functions) and their analytic continuation to imaginary time (Euclidean QM). The quantum particle on a circle is discussed in detail, as an example of the interplay between topology and functional integral, leading to the emergence of superselection rules and q sectors. Contents: Mathematical Description of a Physical System; Mathematical Description of a Quantum System; The Quantum Particle; Quantum Dynamics. The Schrödinger Equation; Examples; Quantum Mechanics and Stochastic Processes.
Show Less

Since launching the first textbook rental site in 2006, BookRenter has never wavered from our mission to make education more affordable for all students. Every day, we focus on delivering students the best prices, the most flexible options, and the best service on earth. On March 13, 2012 BookRenter.com, Inc. formally changed its name to Rafter, Inc. We are still the same company and the same people, only our corporate name has changed.